Bachelor's Thesis Engineering Technology

Automation of sawing and drilling operations for aluminium profiles

Frederick Grosemans and Kaan Tas

Electromechanical Engineering Technology

Situation

The Bachelor thesis will be made within the company LASE in Herk-de-Stad. LASE is an intermediary in automation projects within the automotive industry. Since 2001, the company has been providing full-service automation projects to automobile manufacturers [1]. To realize the projects, LASE uses aluminum profiles. These profiles are first machined to meet the requested dimensions. Figure 1 shows an overview of this process. The assignment for this Bachelor thesis is to automate this process.

Figure 1: Schedule working principle

Problem With the method of work in figure 1, four problems arise : The loss of time. If a worker performs all the steps as explained in the situating, he quickly loses five to 10 minutes. Human error can occur in manual operations.

- **Insufficient buffer capacity**. As shown in figure 2, there is only room for one profile.
- The lack of entrapment. In the sawing process, trapping is only provided in the vertical direction, as shown in

figure 3. In addition, the drilling process contains no entrapment.

Figure 2: Buffer

Figure 3: Trapping vertical direction

Objectives

The objectives for this thesis are:

- A maximum price of 50 000 euros.
- Machine may be maximum 14 meters long and 3 meters wide
- Machine must work with aluminum profiles varying between 20 x 20 and 200 x 100 mm²

• In one minute, there must be saw

• Machine must be able to drill in 4

actions or one drill and one saw action.

Position tolerance for drilling is 0.5

• Profiles must not be damaged

A buffer of at least five profiles

Tolerance for cutting is 0.1 mm

Results

Figure 7: Drawing assembly

Figure 6: Drawing buffer

Figure 8: Final Result

Method

The order of the method is explained chronologically below.

- A function block diagram was made of the objectives.
- A morphological overview was made of the various possible solutions to these problems.
- One solution was chosen and further

- developed to concept level. Figure 5 shows a concept drawing.
- Drawings were made using the CAD program PTC Creo. Figure 6 and 7 show these drawings. Figure 8 gives the final result.
- Figure 5: Function block diagram

Supervisors / Co-supervisors / Advisors:

Prof.dr.ing. Karel Kellens Prof.dr.ing. Michael Daenen ing. John Bijnens [1] Lase, "Join our team" 2022.[Online].Available: https://www.lase.be [Opened 28 oktober 2022]
[2] LASE group, "LASEgroup machinebouwer," 2018. [Online]. Available: https://www.lase.be/ [Opened 2 may 2023].

planes

mm

•

De opleiding industrieel ingenieur is een gezamenlijke opleiding van UHasselt en KU Leuven

