Bachelor's Thesis Engineering Technology

2018 - 2019

BUFFERING AND MACHINING OF RAILS

Alidin Akkoç & Magomed Murtazaliyev

Specialization Electromechanical Engineering Technology

Situation

- Vansichen in Hasselt \rightarrow Linear technology
- Rails: 4 m long → maximum width : 65 mm
 → Delivered in boxes

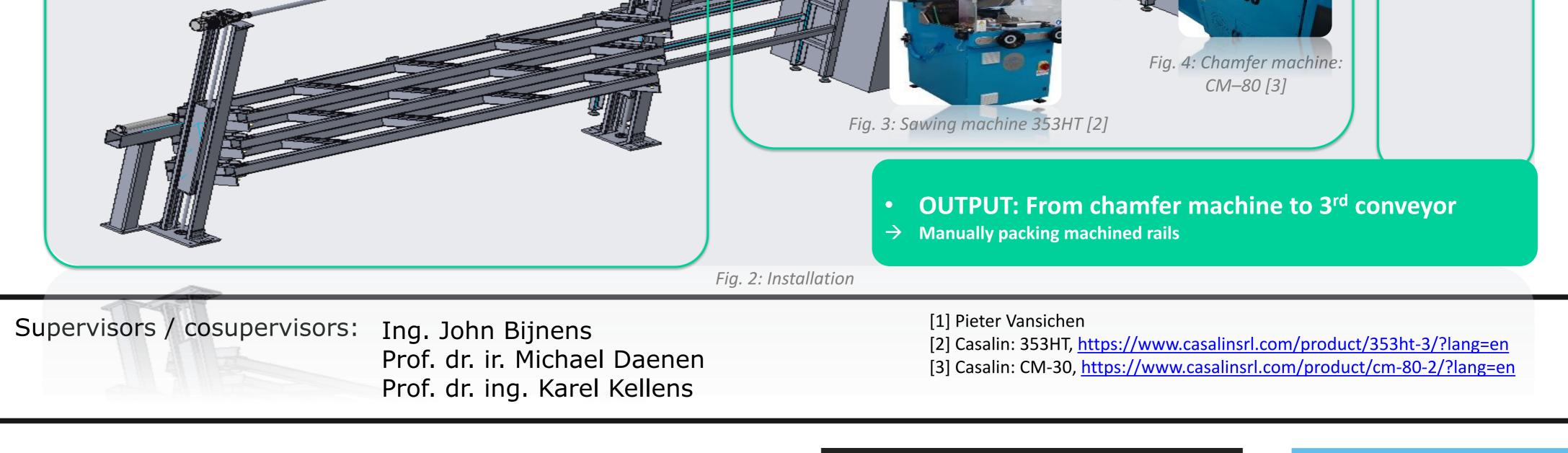
No constant working speed of employees
 → No certainty if the order of the costumer is ready on time

- No ergonomic workload
- \rightarrow The largest rail has a weight of 80kg
- \rightarrow Unhealthy to carry these rails constantly from one machine to another

- Operations:
- **1.** Manually placing rails on roller conveyor by multiple workers
- 2. Sawing the rail in requested lengths
- 3. Chamfering by grinding the edges

- High labour costs
- Not accurately
- \rightarrow Sawing and chamfering is not automatic

Solution


• INPUT: Buffer system

→ Manually insert rails in this system → Start of automated process From buffer system to 1^{st} conveyor:

- 1. Capacitive sensors are positioned on the downside of each level.
- 2. When these sensors are activated, the actuator removes the rail that touched the sensors from this system.
- 3. The other rails move down by gravity so it is possible that the next one can be pushed by the actuator.

PROCESS: Sawing + Chamfering of rails

- 1st conveyor: the rail will be positioned on the conveyor → Sawing machine (very precisely)
- 2. Sawing machine $\rightarrow 2^{nd}$ conveyor
- 3. 2^{nd} conveyor \rightarrow Chamfer machine

